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Dissolution Profile of Log-Normal Powders II: 
Dissolution before Critical Time 

DANABROOKE 

Abstract 0 The dissolution of log-normal powders, particularly in 
that period before the smallest particles disappear, was exam- 
ined. An approximation for the slope of a cube-root law plot was 
developed for the dissolution before the critical time of ideally 
distributed powders. Such an approximation does not hold, how- 
ever, for severely truncated log-normal distributions. The work of 
previous investigators in this area appears to be incorrect and is 
discussed. 

Keyphrases 0 Dissolution profiles-log-normal powders, dissolu- 
tion before critical time, cube-root law plot approximation 0 Pow- 
ders, dissolution-log-normal distribution profile, dissolution be- 
fore critical time, cube-root law plot approximation 0 Particle dis- 
solution-log-normally distributed powders, dissolution before 
critical time, cube-root law plot approximation 

In their paper on the dissolution of powders that 
follow the log-normal distribution, Carstensen and 
Musa (1) attempted to find correlations between the 
well-known “cube-root law” (2) and their computer- 
generated dissolution patterns. They offered two ap- 
proximations to the cube-root law wherein the slopes 
were stated as functions of the means and standard 
deviations of the log-normal distributions. One equa- 
tion dealt with dissolution before the time when the 
smallest particles disappeared, Le., before the “criti- 
cal time.” Another equation dealt with dissolution 
after the critical time. 

Brooke (3), in a discussion of exactly calculated 
dissolution profiles for log-normally distributed pow- 
ders, reported that the Carstensen and Musa ap- 
proximation for dissolution before the critical time 
gave excellent results. Further examination of this 
subject, however, shows that the approximation is 
incorrect. The test of the approximation (3) was, in 
fact, inconclusive. 

The present paper examines the time course of 
dissolution, particularly in that period before a sig- 

nificant number of particles disappear, for log-nor- 
mally distributed powders varying in standard de- 
viation and extent of truncation. As expected, for 
narrow distributions the cube-root law holds for dis- 
solution before the critical time. However, one ap- 
proximation of the cube-root law slope will not apply 
for all log-normal distributions. An approximation is 
offered that does hold for powders obeying the ideal 
log-normal distribution. 

THEORETICAL AND CALCULATIONS 
The complete derivation of an expression that exactly describes 

the dissolution of log-normal powders was given by Brooke (3). 
Briefly, if there is a powder containing spherical particles of di- 
ameters a0 which are distributed, on a numbers basis, so that 
lnao is normal with mean p and standard deviation u, then the 
probability frequency f of log diameters is: 

f = (1 /q&k+In% - 14/2.‘ (Eq. 1) 
If such particles dissolve isotropically under sink conditions 

and if the solubility C ,  is independent of particle size, then the 
diameters a ,  of particles at  some function T of time can be writ- 
ten (1) as: 

a ,  = a, - T 

Here T is ZkC,t /p ,  where k is a proportionality constant, p is par- 
ticle density, and t is time. The weight u.‘, of a powder remaining 
at  any T is found by the integration: 

(Es. 2) 

u, = S(*pN/G)(a ,  - ~ ) ~ f  d In a,, oh 3) 

where N is the number of particles at  time zero. This is somewhat 
different from the integral in Eq. 6 of the Carstensen and Musa 

The limits of integration in Eq. 3 depend on T and on the origi- 
nal powder distribution. Let i and j be numbers that reflect the 
extent of truncation at  the small particle end and the large parti- 
cle end, respectively. If the powder is such that all In a0 are found 
between p - ia and fi  + j u ,  then for In T 5 p - ia, the integration 
would be from f i  - ia to p + ;a. For In T > p - ia, the integration 
would be from In T to p + jo. If i = ; = -, the solution to Eq. 3 
becomes Eq. 13 of the previous paper (3). 

(1) paper. 
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Table I-Exactly Calculated Dissolution Profiles for Various Log-Normal Powders“ 

Truncated Distributions 

i = 1, 
j = 10 Ideal Distributions, i = 10, j = 10 i = 2 , j  = 10 i = 2 , j  = 2 

T/M u = 0 0.03 0.05 0.1 0.2 0.3 0.5 0.7 0.03 0.1 0.3 0.1 0.3 0.03 0.1 0.3 

0 . 1  72.9 
0.2 51.2 
0 . 3  34.3 
0.4 21.6 
0 . 5  12.5 
0.6 6 . 4  
0 .7  - 
0.8 - 
1.0  - 
1 . 5  - 
2.0 - 
3 . 0  - 
4.0 - 

73.0 
51.3 
34.4 
21.7 
12.6 
6 . 5  
- 
- 
- 
- 
- 
- 
- 

73.1 
51.5 
34.6 
21.9 
1 2 . 8  
6.7 
- 
- 
- 
- 
- 
- 
- 

73.5 
52.2 
35.6 
23.0 
13.8 
7.6 
- 
- 
- 
- 
- 
- 
- 

75.3 
55.3 
39.3 
27.0 
17.7 
11.1 
6.7  
- 
- 
- 
- 
- 
- 

78.1 
59.9 
45.2 
33.4 
24.2 
17.3 
12.2 
8.7 - 
- 
- 
- 
- 

85.0 
72.0 
60.9 
51.4 
43.3 
36.6 
31.0 
26.5 
19.6 
10.5 
- 
- 
- 

91.6 
84.0 
77.1 
70.8 
65.2 
60.1 
55.6 
51.5 
44.5 
32.3 
24.8 
16.5 
12.2 

73.0 
51.3 
34.5 
21.8 
12.7 
6 .5  
- 
- 
- 
- 
- 
- 
- 

73.6 
52.4 
35.7 
23.1 
13.9 
7.6 
- 
- 
- 
- 
- 
- 
- 

78.1 
60.0 
45.2 
33.5 
24.3 
17.3 
12.2 
8 . 7  
- 
- 
- 
- 
- 

74.0 
53.0 
36.4 
23.8 
14.5 
8 . 1  
- 
- 
- 
- 
- 
- 
- 

78.6 
60.7 
46.0 
34.2 
24.9 
17.7 
12.4 
8 . 7  
- 
- 
- 
- 
- 

72.9 
51.3 
34.4 
21.7 
12.6 
6 . 5  
- 
- 
- 
- 
- 
- 
- 

73.4 
52.0 
35.3 
22.6 
13 .5  
7 . 3  - 
- 
- 
- 
- 
- 
- 

76.8 
57.8 
42.4 
30.3 
21 .1  
14.2 
9 . 4  
- 
- 
- 
- 
- 
- 

a The tabled values are (wr X lOO/wo). 

Table I I S l o p e s  (a) for the Cube-Root Law, Eq. 6, for Various Log-Normal Distributions“ 

i 10 2 
U j 10 10 

1 2 10 10 3 
10 2 2 3 3 

0.03 0.997 0.996 0.989 0.998 0.999 0.997 0.997 
0.05 0.993 0.991 0.981 0.994 0.997 0.993 0.993 
0 .1  0.974 0.971 0.954 0.980 0.983 0.975 0.974 
0.2 0.901 0.898 0.877 0.924 0.927 0.904 0.904 
0 . 3  0.792 0.790 0.772 0.841 0.843 0,800 0,800 
0.5 0.526 0.526 0.519 0.643 0.643 0.552 0.552 
0.7 0.288 0.288 0.286 0.456 0.456 0.334. 0.334 

The values of the table are 8; i and j indicate extent of truncation. 

The general expression for weight fraction undissolved, w,/wo, 
is based on the derivations of the previous report (3) and the 
above discussion. If it is remembered (3) that cc = In M, where M 
is the geometric mean diameter, then it can be shown that w,/wo 
is: 

where F( ) is the area under a standard normal curve from - m to 
the stated argument, and T is defined by T = j t  - iu when In r 5 
j t  - iu, or T = In 7 when In T > j t  - iu. 

For any set u, i, and J, all dissolution profiles will be identical if 
considered on a w,/wo versus 7/M basis. When T in Eq. 4 is p - 
iu the term j t  disappears from the equation. When T = In T ,  then 
every T - j t  can be expressed as l n ( ~ / M ) .  

Dissolution profiles for different log-normally distributed pow- 
ders were calculated according to Eq. 4 using a computer’. Each 
F( ) term was evaluated by numerical methods. Values so calcu- 
lated compared with tabled values for the standard normal distri- 
bution to the fourth significant figure. Several computer results 
for w,/wo were checked for correctness by independent calcula- 
tions. All values w,/wo were calculated to four significant figures 
and rounded to three figures in this report to conserve space. 

RESULTS AND DISCUSSION 

Exactly calculated dissolution profiles for hypothetical log-nor- 
ma1 powders variously truncated and having standard deviations 
ranging from 0.03 to 0.7 are presented in Table I as weight per- 
cent undissolved (100 X w,/wo) uersus r/M. In the strictest 
sense, no profiles were calculated for “ideal” distributions, i.e., 
where - m < In a0 < + m. Practically speaking, however, profiles 
for distributions where i = j = 10 should be considered ideal. 

IBM 1800. 

In the previous paper (3), Brooke indicated how to calculate 
w,/wo for distributions truncated at the large particle end. In- 
stead of treating a truncation at  the small particle end, Brooke 
suggested that truncation effects at the small end could, in many 
cases, be ignored without introducing large errors. Comparisons of 
dissolution patterns (Table I) of distributions that are “ideal” at 
the small end ( i  = 10) with those for similar distributions trun- 
cated at the small end (i = 1, 2, . . . )  show that this is generally 
true. The difference between values of w,/wo for an ideal distri- 
bution and for a truncated ( i  = 2) distribution is less than 1% 
through 95% of the profile. The differences between w,/wo for an 
ideal versus a truncated distribution with i = 1 runs to about 
6.6%. For u 2 0.3, differences tend to be negligible. Distributions 
truncated so that i = 3 could be treated as ideal at the small end 
with errors much smaller than 1%. 

The dissolution pattern for a log-normal distribution with u = 0 
is given in Table I. For u = 0, Eq. 4 becomes: 

w,/w, = [l - (7/M)]’ (Eq. 5) 

which is the equation for a monosized distribution of particles of 
diameter M. The profile so calculated comes close to, but slightly 
underestimates, the weight fraction remaining through 80 or 90% 
of the profile for powders having standard deviations as large as 
0.1. Thus, for many log-normal distributions with small u ,  includ- 
ing all of those treated by Carstensen and Musa (l), it may be 
more desirable to approximate dissolution patterns quickly by 
Eq. 5 and to accept the generally modest errors that result than 
to calculate tediously such profiles exactly. 

To treat the dissolution before the critical time of log-normal 
powders, the initial portions of profiles like those of Table I were 
fitted to a modified cube-root law equation given by: 

1 - (w,/w0)”3 = @(TIM) 0%. 6) 

Here /3 is the slope of a linear plot of 1 - ( ~ . ‘ , / w ~ ) ~ ’ ~  uersus ( 7 /  

M). Carstensen and Musa (1) used the more classical form of the 
cube-root law shown below: 
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Table 111-Least-Squares Regression Data for Plots of In B uersus U* Based on Values in Tab le  IIQ 

i 10 2 1 2 10 10 3 
j 10 10 10 2 2 3 3 

-slope 2.539 2.533 2 . 5 1 9 ’  1 .610 1 .616  2 .244  2.244 
-intercept 0.0023 0.0047 0.0210 0,0119 0.0100 0.0095 0.0095 

r* 0.99997 0.99997 0.9996 0.9970 0.9970 0.9990 0,9990 

a Extent of truncation is indicated by i and j .  

where wo = 100 and a is a constant. It is seen that a and @ are re- 
lated by a = ( w o ~ / ~ ~ / M ) .  Equations 6 and 7 really apply only for 
the narrowest of distributions (4). 

Values for ,!3 for numerous distributions are given in Table 11. In 
every case, the value was calculated from the portion of the pro- 
file given for 0 < T/M < 0.1. If the critical time T~ is taken as 
that T when the smallest particles disappear, then no such time 
exists for ideal distributions since 0 5 a0 5 m. However, if one 
defines the critical time by In T~ = p - 30, then only small errors 
are introduced into the calculations. Every @ in Table I1 was cal- 
culated for a time shorter than that defined by In T~ = fi  - 30. 

By the following reasoning, it was found that, for ideal or near- 
ly ideal distributions, a good approximation for @ would have the 
form el-c4 For ideal distributions or for not severely truncated 
distributions (e.g., where j - 3u and i + u are greater than about 
3), Eq. 4 for 7 < T~ can be approximated by: 

w,/wo = 1 - 3 ( ~ / M ) e - ~ ~ ” ~  + 3 ( ~ / M ) * e - ~ ~ ’  - (T/M)3e-*’/2 

0%. 8) 
Although the right side of the equation is not a perfect cube, i t  
can be treated as a cubic of the form: 

w , / w ~  = [l - ( T / M ) ~ - ~ ‘ ‘ ] ~  (Eq. 9) 

since the terms ~ ( T / M ) ~ ~ ’ - Q ’  and ( ~ / M ) ~ e - 9 = ’ / 2  for small 
( T / M )  are relatively unimportant and can be manipulated with- 

-0.5 

h 

v a 
CI s 
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2 + 
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0.2 0.4 
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Figure 1-Plot of In 0 versus U Z  for a series of ideal (i = j = 
10) distributions (0) and for a series of truncated (i = j = 2) 
distributions (A). The symbols refer to calculated slopes given 
in Table I I .  

out seriously affecting the equation. If this is true, then a plot of 
In 6 versus u2 will be a straight line with a slope of - c  and an in- 
tercept of zero. Figure 1 shows such a plot for a series of ideal ( i  = 
j = 10) distributions and for a series of truncated ( i  = j = 2) dis- 
tributions. 

The plot in Fig. 1 for the ideal distributions appears to be 
straight. Linear regression techniques (Table 111) indicate a slope 
of -2.54 and a near zero intercept. The linearity, as judged by a 
coefficient of determination (r2) of 0.99997, is excellent. Thus, for 
ideal or nearly ideal distributions, @ can be approximated by 
e-2.S’  and the dissolution before the critical time can be ap- 
proximated by: 

1 - (w,/w0)1/3 = e-2.54o‘ (T/M) (Eq. 10) 

For distributions like those where i = j = 2, the effect of trunca- 
tion becomes more and more important as u is increased. A con- 
venient approximation such as Eq. 10 is not acceptable with se- 
verely truncated distributions. 

It is intuitively satisfying that in the approximation @ = 
e-2.54~~ the coefficient of u2 is close to -2.5. It is also satisfy- 
ing that as u - 0, @ - 1, a result required by Eq. 5. Furthermore, 
it is satisfying that the approximation holds over a wide range of 
u, although this might not have been expected since the cube-root 
law is to be applied only for narrow distributions. 

In contrast, the Carstensen and Musa (1) approximation, given 
in the notation of this report by a = 50 /M(~ /2 .303) ’ .~~ ,  predicts 
that as u - 0, a - m. Furthermore, the form of the approxima- 
tion does not hold over a wide range of u. In addition, the slopes 
of cube-root plots for times before the critical time presented in 
the Carstensen and Musa table cannot be calculated by their ap- 
proximation. The tabled slopes do appear to be correct and are 
calculable by the approximation used in Eq. 10. By using the 
slopes in the Carstensen and Musa (1)  paper and linear regression 
techniques, it can be determined that a should be given by: 

a = 4.26/M(~/2.303)””’~~ (Eq. 11) 
In the previous paper, Brooke (3) calculated a from the incor- 

rect approximation, chose a point ( 7 * ,  w ~ * / w o )  from the exactly 
calculated profile, and then calculated a ~ J O ~ / ~  to fit the following 
expression: 

w,*/wo = [l - ( a / w , l l 3 ) ~ * I 3  (Es. 12) 
Obviously, the ratio ( Y / w ~ ~ I ~  obtained was correct, even though 

the separate values a and w01/3 were not. Thus, the test of the 
approximation a offered by Brooke was inconclusive. 

This report has dealt with approximations for the slopes of 
cube-root law plots for the dissolution of log-normal powders be- 
fore the critical time. Although such approximations may seem 
useful, a convenient approximation for all log-normal distribu- 
tions has not been found. To apply an approximation like that of 
Eq. 10 for the dissolution of ideal log-normal powders before the 
critical time, one must know all of the parameters that  would 
allow exact calculations to be made. Such approximations might, 
however, be useful in curve-fitting experimental data to deter- 
mine one or several basic parameters of dissolution profiles. 
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Colorimetric Determination of Guanazole in 
Plasma and Blood 

C. DAVEx and L. CABALLES 

Abstract 0 A simple colorimetric procedure is described for deter- 
mination of guanazole (3,5-diamino-1,2,4-triazole), a new antileu- 
kemic drug. The test is based upon diazotizing guanazole in water 
or in trichloroacetic acid extract obtained from plasma or serum, 
coupling the diazonium salt with diphenylamine, and extracting 
the azo dye with isopentyl alcohol. The product has a Amax at  485 
nm, is stable for several days, and obeys Beer’s law over a wide 
concentration range. An amount as low as 5 nmoles in 2 ml can 
be determined under the conditions described. Under the same 
condition, 3-amino-1,2,4-triazole gave a yellow product in iso- 
pentyl alcohol (A,,, 450 nm) with a sensitivity 20 times less than 
that with guanazole, whereas lH-1,2,4-triazole gave no color a t  
all. Recoveries of guanazole added to fetal calf serum and dog 
plasma were within 95-105%. Following a single intravenous dose 
to a rat, blood levels of guanazole, evaluated by the colorimetric 
procedure, were comparable to those obtained measuring concur- 
rently administered 14C-labeled compound by standard tracer 
techniques. A half-life of 68 rnin was thus observed by both meth- 
ods. The sensitivity and reproducibility of the assay, together 
with the relative lack of interference from other substances like 
urea and amino acids, make the procedure suitable for the deter- 
mination of plasma levels of drug in small samples. 

Keyphrases 0 Guanazole in plasma and blood-colorimetric 
analysis 0 Colorimetry-analysis, guanazole in plasma and blood 

Guanazole (3,5-diamino-1,2,4-triazole, NSC-1895, 
mol. wt. 99.1), reportedly synthesized by Pellizzari 
in 1894 (l), is a new antileukemic agent which is 
therapeutically effective against mouse leukemia L- 
1210 (2) and human acute myelocytic leukemia (3, 
4). Its antileukemic actions appear to be related to 
its ability to inhibit ribonucleoside diphosphate re- 
ductase, a key enzyme involved in deoxynucleotide 
synthesis during the DNA-synthetic phase of the cell 
cycle (5). 

A sensitive colorimetric procedure was developed 
to study the pharmacokinetics of guanazole in pa- 
tients with acute myelocytic leukemia (6). The ratio- 
nale for the present methodology is based upon the 
fact that the primary amino groups of 1,2,4-triazole 
are diazotizable (7). The diazotized product in the 

N-N 

H 
guanazole 

case of guanazole was coupled with diphenylamine, 
resulting in the formation of a red dye which could 
be readily extracted with isopentyl alcohol. 

EXPERIMENTAL 

Chemicals and Reagents1-The purity of labeled and unla- 
beled guanazole was determined by TLC on silica gel precoated 
plastic sheets without fluorescent indicator* using the following 
three solvent systems (v/v): (a) methanol-dioxane (2:1), (b )  
water-dioxane (l:lO), and (c) water-methanol (1: lO).  

Chromatograms were developed in a TLC chamber3 for 30- 
45 min. Spots were visualized by placing the dried chromatogram 
in iodine vapors, and the Rf values for guanazole were found 
to be 0.31, 0.73, and 0.61. Both labeled and unlabeled compounds 
migrated as a single spot on the chromatogram with each solvent 
system. 

For a standard colorimetric assay, the following reagents were 
prepared: fa )  acid mixture, 1.5% (v/v) sulfuric acid in acetic 
acid; f b )  nitrite reagent, 1% (w/v) NaNOz in water; and (c )  di- 
phenylamine reagent, 10% (w/v) diphenylamine in the acid mix- 
ture reagent. 

Protein Precipitation-Blood plasma or serum samples were 
generally diluted five- to 10-fold with 5% (w/v) trichloroacetic 
acid, mixed, and allowed to stand on ice for 10 min. The precipi- 
tates were centrifuged and the supernate was used for analysis. In 
samples with low guanazole content, plasma was diluted only 
with an equal volume of 10% trichloroacetic acid, the precipitate 
was washed once with one volume of 5% trichloroacetic acid, and 
the supernates were combined. 

Standard Colorimetric Procedure-To a 2-ml aliquot contain- 
ing 0.5-50 pg guanazole, 0.1 ml of the acid mixture reagent was 
added and cooled in ice. Nitrite reagent (0.1 ml) was added and 
mixed rapidly, and the mixture was kept in ice for 10 min for op- 
timal diazotization. Diphenylamine reagent (0.1 ml) was added 
and mixed rapidly, and the mixture was left for 15 min at  room 
temperature for maximum color development. The azo dye was 
extracted with 3.0 ml of isopentyl alcohol by gently inverting the 
tube sever61 times. Centrifugation, although not required in the 
authors’ experience, may be carried out if an emulsion forms. The 
organic solvent phase was transferred to another test tube con- 
taining about 1 g of anhydrous sodium sulfate, mixed, and al- 
lowed to stand for 5 min. The absorbance of the solvent layer was 
then read‘ in a 1-cm cell at 485 nm. 

Since trichloroacetic acid extracts from control plasma samples 

‘Guanazole, a s  well as guanazole uniformly labeled with “C (51 pCi/ 
mg), was generously provided by Dr. J. F. Holland, Mount Sinai Hospital, 
New York. N.Y. 3-Amino-1 2 4-triazole and lH-1,2,4-triazole were obtained 
from Eastman Kodak, &$ester, N.Y. Fetal calf serum was purchased 
from Grand Island Biologicals, Grand Island, N.Y. All other chemicals were 
analytical grade from Fischer Chemical Co. 

Eastman Kodak, Rochester, N.Y. 
3 Gelman. ’ Beckman model DB-G spectrophotometer. 
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